Abstract
Background
Pancreatic cancer (PC) represents one of the most aggressive forms of cancer. The role of long non-coding RNAs (lncRNAs) has been highlighted in various malignancies including PC. The aim of the present study was to investigate the effects associated with actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) on the progression of PC and the underlying mechanism.
Methods
Microarray-based gene expression profiling of PC was performed to identify PC-related lncRNAs, after which the expression of AFAP1-AS1 and cancer stem cell (CSC) markers in PC tissues and cells were determined accordingly. The potential microRNA-384 (miR-384) capable of binding to AFAP1-AS1, in addition to its ability to regulate activin receptor A type I (ACVR1) were analyzed. In order to investigate the effect of the AFAP1-AS1/miR-384/ACVR1 axis on self-renewal ability, tumorigenicity, invasion, migration and stemness of PC cells, shRNA-AFAP1-AS1, miR-384 mimic and inhibitor were cloned into cells.
Results
High expression of AFAP1-AS1 and ACVR1 with low expression of miR-384 were detected in PC tissues. ACVR1 was determined to be down-regulated when miR-384 was overexpressed, while the inhibition of AFAP1-AS1 decreased its ability to binding competitively to miR-384, resulting in the down-regulation of ACVR1 and enhancing miR-384 expression, ultimately inhibiting the progression of PC. The knockdown of AFAP1-AS1 or overexpression of miR-384 was confirmed to impair PC cell self-renewal ability, tumorigenicity, invasion, migration and stemness.
Conclusions
Taken together, AFAP1-AS1 functions as an endogenous RNA by competitively binding to miR-384 to regulate ACVR1, thus conferring inhibitory effects on PC cell stemness and tumorigenicity.
https://ift.tt/2TmGXUe
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.