Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Τετάρτη 28 Μαρτίου 2018

Polycystin 1 loss of function is directly linked to an imbalance in G-protein signaling in the kidney [RESEARCH ARTICLE]

Bo Zhang, Uyen Tran, and Oliver Wessely

The development of the kidney relies on the establishment and maintenance of a precise tubular diameter of its functional units, the nephrons. This process is disrupted in polycystic kidney disease (PKD), resulting in dilations of the nephron and renal cyst formation. In the course of exploring G-protein-coupled signaling in the Xenopus pronephric kidney, we discovered that loss of the G-protein α subunit, Gnas, results in a PKD phenotype. Polycystin 1, one of the genes mutated in human PKD, encodes a protein resembling a G-protein-coupled receptor. Furthermore, deletion of the G-protein-binding domain present in the intracellular C terminus of polycystin 1 impacts functionality. A comprehensive analysis of all the G-protein α subunits expressed in the Xenopus pronephric kidney demonstrates that polycystin 1 recruits a select subset of G-protein α subunits and that their knockdown – as in the case of Gnas – results in a PKD phenotype. Mechanistically, the phenotype is caused by increased endogenous G-protein β/ signaling and can be reversed by pharmacological inhibitors as well as knocking down Gnb1. Together, our data support the hypothesis that G proteins are recruited to the intracellular domain of PKD1 and that this interaction is crucial for its function in the kidney.



https://ift.tt/2pLICBY

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.