Abstract
Hexagonal boron nitride (hBN) is a natural hyperbolic material that supports both volume-confined hyperbolic polaritons and sidewall-confined hyperbolic surface polaritons (HSPs). In this work, efficient excitation, control, and steering of HSPs are demonstrated in hBN through engineering the geometry and orientation of hBN sidewalls. By combining infrared nanoimaging and numerical simulations, the reflection, transmission, and scattering of HSPs are investigated at the hBN corners with various apex angles. It is also shown that the sidewall-confined nature of HSPs enables a high degree of control over their propagation by designing the geometry of hBN nanostructures.
Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride are demonstrated. The reflection, transmission, and scattering coefficients of polaritons are also investigated around the sample corner and alter these coefficients by changing the corner angle. A high-degree propagation steering of polaritons by tailoring the sample geometry is also accomplished.
http://ift.tt/2p8lT3H
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.