Abstract
Carbon dots (CDs) have significant potential for use in various fields including biomedicine, bioimaging, and optoelectronics. However, inefficient excitation and emission of CDs in both near-infrared (NIR-I and NIR-II) windows remains an issue. Solving this problem would yield significant improvement in the tissue-penetration depth for in vivo bioimaging with CDs. Here, an NIR absorption band and enhanced NIR fluorescence are both realized through the surface engineering of CDs, exploiting electron-acceptor groups, namely molecules or polymers rich in sulfoxide/carbonyl groups. These groups, which are bound to the outer layers and the edges of the CDs, influence the optical bandgap and promote electron transitions under NIR excitation. NIR-imaging information encryption and in vivo NIR fluorescence imaging of the stomach of a living mouse using CDs modified with poly(vinylpyrrolidone) in aqueous solution are demonstrated. In addition, excitation by a 1400 nm femtosecond laser yields simultaneous two-photon-induced NIR emission and three-photon-induced red emission of CDs in dimethyl sulfoxide. This study represents the realization of both NIR-I excitation and emission as well as two-photon- and three-photon-induced fluorescence of CDs excited in an NIR-II window, and provides a rational design approach for construction and clinical applications of CD-based NIR imaging agents.
Both near-infrared (NIR) absorption band and enhanced NIR photoluminescence under NIR excitation are simultaneously realized for carbon dots through surface engineering of molecules or polymers rich in sulfoxide/carbonyl groups. Two-photon-induced NIR emission and three-photon-induced red emission are simultaneously observed for carbon dots in dimethyl sulfoxide under excitation of a 1400 nm femtosecond pulse laser in an NIR-II window.
http://ift.tt/2FT99nl
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.