Abstract
Waste flour from the noodle industry was used to produce films, which were plasticized with 40% w/w glycerol:sorbitol at 2:1, 3:1, and 4:1 w/w and formulated with 200 ppm potassium sorbate. Henderson's equation was found to be the best estimator for moisture sorption isotherm of the films stored at 5, 25, and 45°C, and then, equilibrated at 0.11, 0.23, 0.32, 0.43, 0.58, 0.64, 0.76, 0.84, and 0.93 water activity. Developed flour films (plasticized with 2:1 w/w glycerol:sorbitol/formulated with 20% w/w potassium sorbate), with the best mechanical properties (tensile strength of 1.05 MPa; elongation at break of 73.01%), were used to cover fresh strawberries on a polystyrene foam tray. It was found that higher average phenolic contents, antioxidant activity, and firmness were found in strawberries wrapped in plasticized/formulated films, when compared against both films without potassium sorbate and without film (control). Furthermore, a lower average total microorganism count was found for fresh strawberries wrapped in the plasticized/formulated films, when compared with films without potassium sorbate.
Waste flour from noodle production could be used to produce flour-based films. The moisture sorption isotherms of the films showed the correlation between the equilibrium moisture content and the water activities was well fitted by Henderson's equation. The flour film with plasticizers (glycerol and sorbitol) and potassium sorbate could be a promising alternative natural packaging material to reduce the use of nonbiodegradable synthetic polymer films in food applications.
http://ift.tt/2E6pqsB
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.