Abstract
A crumply and highly flexible lithium-ion battery is realized by using microfiber mat electrodes in which the microfibers are wound or webbed with conductive nanowires. This electrode architecture guarantees extraordinary mechanical durability without any increase in resistance after folding 1000 times. Its areal energy density is easily controllable by the number of folded stacks of a piece of the electrode mat. Deformable lithium-ion batteries of lithium iron phosphate as cathode and lithium titanium oxide as anode at high areal capacity (3.2 mAh cm−2) are successfully operated without structural failure and performance loss, even after repeated crumpling and folding during charging and discharging.
Crumply superflexible lithium-ion batteries based on current-collector-free and binder-free nanowire-around-microfiber electrode architectures are presented. The battery cells of high loading density at 3.2 mAh cm−2 are successfully operated under folding, crumpling, and even hammering.
http://ift.tt/2BkQ8sj
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.