Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Κυριακή 10 Σεπτεμβρίου 2017

Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels

Li anodes have been rapidly developed in recent years owing to the rising demand for higher-energy-density batteries. However, the safety issues induced by dendrites hinder the practical applications of Li anodes. Here, Li metal anodes stabilized by regulating lithium plating/stripping in vertically aligned microchannels are reported. The current density distribution and morphology evolution of the Li deposits on porous Cu current collectors are systematically analyzed. Based on simulations in COMSOL Multiphysics, the tip effect leads to preferential deposition on the microchannel walls, thus taking full advantage of the lightening rod theory of classical electromagnetism for restraining growth of Li dendrites. The Li anode with a porous Cu current collector achieves an enhanced cycle stability and a higher average Coulombic efficiency of 98.5% within 200 cycles. In addition, the resultant LiFePO4/Li full battery demonstrates excellent rate capability and stable cycling performance, thus demonstrating promise as a current collector for high-energy-density, safe rechargeable Li batteries.

Thumbnail image of graphical abstract

A new strategy to restrain lithium dendrite growth is proposed and demonstrated using vertically aligned microchannel Cu current collectors for Li metal anodes. Most of the lithium is preferentially deposited into the microchannels. The current-density distribution, deposition behavior, and electrochemical performance are simulated and investigated experimentally to understand the effectiveness of the microchannel structure.



http://ift.tt/2xYJxT3

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.