Graphene plasmons provide great opportunities in light–matter interactions benefiting from the extreme confinement and electrical tunability. Structured graphene cavities possess enhanced confinements in 3D and steerable plasmon resonances, potential in applications for sensing and emission control at the nanoscale. Besides graphene boundaries obtained by mask lithography, graphene defects engineered by ion beams have shown efficient plasmon reflections. In this paper, near-field responses of structured graphene achieved by ion beam direct-writing are investigated. Graphene nanoresonators are fabricated easily and precisely with a spatial resolution better than 30 nm. Breathing modes are observed in graphene disks. The amorphous carbons around weaken the response of edge modes in the resonators, but meanwhile render the isolated resonators in-plane electrical connections, where near-fields are proved gate-tunable. The realization of gate-tunable near-fields of graphene 2D resonators opens up tunable near-field couplings with matters. Moreover, graphene nonconcentric rings with engineered near-field confinement distributions are demonstrated, where the quadrupole plasmon modes are excited. Near-field mappings reveal concentrations at the scale of within certain zones which can be engineered. The realization of electrically tunable graphene nanoresonators by ion beam direct-writing is promising for active manipulation of emission and sensing at the nanoscale.
Back-gate tunable near-field in ion-beam induced two-dimensional graphene structures is demonstrated by using scattering-type scanning near-field optical microscopy, guaranteed by the electrical connectivity of amorphous graphene. Breathing modes are observed in graphene disks. Moreover, nonconcentric rings show field concentrations at tailorable regions with the scale of . The electrically tunable graphene nanoresonators is promising for nanoscele active manipulation of emission and sensing.
http://ift.tt/2rmz53d
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.