Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Πέμπτη 4 Μαΐου 2017

Genetic suppression: Extending our knowledge from lab experiments to natural populations

Many mutations have deleterious phenotypic effects that can be alleviated by suppressor mutations elsewhere in the genome. High-throughput approaches have facilitated the large-scale identification of these suppressors and have helped shed light on core functional mechanisms that give rise to suppression. Following reports that suppression occurs naturally within species, it is important to determine how our understanding of this phenomenon based on lab experiments extends to genetically diverse natural populations. Although suppression is typically mediated by individual genetic changes in lab experiments, recent studies have shown that suppression in natural populations can involve combinations of genetic variants. This difference in complexity suggests that sets of variants can exhibit similar functional effects to individual suppressors found in lab experiments. In this review, we discuss how characterizing the way in which these variants jointly lead to suppression could provide important insights into the genotype-phenotype map that are relevant to evolution and health.

Thumbnail image of graphical abstract

Suppressors are genetic changes that revert the deleterious effects of mutations. Here, we review high-throughput lab approaches for identifying suppressors and summarize molecular mechanisms that give rise to suppression. We also discuss an emerging challenge in genetics, which is to understand how naturally occurring genetic variation can cause suppression.



http://ift.tt/2p9vbJX

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.