Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Δευτέρα 23 Μαΐου 2016

Remote Sensing, Vol. 8, Pages 436: Hierarchical Coding Vectors for Scene Level Land-Use Classification

ag

Land-use classification from remote sensing images has become an important but challenging task. This paper proposes Hierarchical Coding Vectors (HCV), a novel representation based on hierarchically coding structures, for scene level land-use classification. We stack multiple Bag of Visual Words (BOVW) coding layers and one Fisher coding layer to develop the hierarchical feature learning structure. In BOVW coding layers, we extract local descriptors from a geographical image with densely sampled interest points, and encode them using soft assignment (SA). The Fisher coding layer encodes those semi-local features with Fisher vectors (FV) and aggregates them to develop a final global representation. The graphical semantic information is refined by feeding the output of one layer into the next computation layer. HCV describes the geographical images through a high-level representation of richer semantic information by using a hierarchical coding structure. The experimental results on the 21-Class Land Use (LU) and RSSCN7 image databases indicate the effectiveness of the proposed HCV. Combined with the standard FV, our method (FV + HCV) achieves superior performance compared to the state-of-the-art methods on the two databases, obtaining the average classification accuracy of 91.5% on the LU database and 86.4% on the RSSCN7 database.

from #Medicine via ola Kala on Inoreader http://ift.tt/20pYlkE
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.