Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Πέμπτη 19 Μαΐου 2016

IJGI, Vol. 5, Pages 72: Density-Based Clustering with Geographical Background Constraints Using a Semantic Expression Model

A semantics-based method for density-based clustering with constraints imposed by geographical background knowledge is proposed. In this paper, we apply an ontological approach to the DBSCAN (Density-Based Geospatial Clustering of Applications with Noise) algorithm in the form of knowledge representation for constraint clustering. When used in the process of clustering geographic information, semantic reasoning based on a defined ontology and its relationships is primarily intended to overcome the lack of knowledge of the relevant geospatial data. Better constraints on the geographical knowledge yield more reasonable clustering results. This article uses an ontology to describe the four types of semantic constraints for geographical backgrounds: "No Constraints", "Constraints", "Cannot-Link Constraints", and "Must-Link Constraints". This paper also reports the implementation of a prototype clustering program. Based on the proposed approach, DBSCAN can be applied with both obstacle and non-obstacle constraints as a semi-supervised clustering algorithm and the clustering results are displayed on a digital map.

from #Medicine via ola Kala on Inoreader http://ift.tt/1U0TCkI
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.