Publication date: 1 July 2016
Source:Talanta, Volume 154
Author(s): Zhuomin Zhang, Cheng Zhao, Gongke Li
Achieving reproducible signals is a key point to improve the analytical precision and accuracy of surface enhanced Raman scattering (SERS) technique and further expand the application scope of SERS for on-site and rapid analysis of real sample with complex matrice. In this work, a novel Au@hydroxyl-functionalized polystyrene (Au@PS-OH) substrate was prepared by atom transfer radical polymerization and chemical assembly method, which possessed promised potential for the rapid and sequential analysis of multisamples coupling with SERS technique. Au@PS-OH substrate with regular nanoarrayed morphology possessed excellent anti-agglomeration capability even for testing solutions with strong basicity or acidity, mechanic and chemical stability due to the large amount of Au nanoparticles homogeneously and stably fixed on substrate surface. Moreover, excellent hydrophobicity of Au@PS-OH substrate could keep testing droplets of multiple samples stable and uniform spherical shape with similar contact angles to substrate, which guaranteed the reproducible SERS light paths and SERS signals during real sequential analysis. Then, an Au@PS-OH based SERS analytical method was developed and practically applied for the sequential determination of trace 4-aminoazobenzene in various textiles. It was satisfactory that the contents of trace 4-aminoazobenzene in black woolen, green woolen and yellow fiber cloth could be actually found and calculated to be 106.4, 120.9 and 140.8mg/kg with good recoveries of 76.0-118.9% and relative standard deviations of 1.6-5.1%. It is expected that this SERS method is suitable for on-site and rapid analysis of multiple samples in a short period.
Graphical abstract
from #Medicine via ola Kala on Inoreader http://ift.tt/1WcFuda
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.