Rainfall-runoff models can be classified into three types: physically based models, conceptual models, and empirical models. In this latter class of models, the catchment is considered as a black box, without any reference to the internal processes that control the transformation of rainfall to runoff. In recent years, some models derived from studies on artificial intelligence have found increasing use. Among these, particular attention should be paid to Support Vector Machines (SVMs). This paper shows a comparative study of rainfall-runoff modeling between a SVM-based approach and the EPA's Storm Water Management Model (SWMM). The SVM is applied in the variant called Support Vector regression (SVR). Two different experimental basins located in the north of Italy have been considered as case studies. Two criteria have been chosen to assess the consistency between the recorded and predicted flow rates: the root-mean square error (RMSE) and the coefficient of determination. The two models showed comparable performance. In particular, both models can properly model the hydrograph shape, the time to peak and the total runoff. The SVR algorithm tends to underestimate the peak discharge, while SWMM tends to overestimate it. SVR shows great potential for applications in the field of urban hydrology, but currently it also has significant limitations regarding the model calibration.
from #Medicine via ola Kala on Inoreader http://ift.tt/1Tyrxol
via IFTTT
Αρχειοθήκη ιστολογίου
-
►
2023
(138)
- ► Φεβρουαρίου (74)
- ► Ιανουαρίου (64)
-
►
2022
(849)
- ► Δεκεμβρίου (61)
- ► Σεπτεμβρίου (74)
- ► Φεβρουαρίου (65)
-
►
2021
(2936)
- ► Δεκεμβρίου (59)
- ► Σεπτεμβρίου (180)
- ► Φεβρουαρίου (325)
-
►
2020
(1624)
- ► Δεκεμβρίου (293)
- ► Σεπτεμβρίου (234)
- ► Φεβρουαρίου (28)
-
►
2019
(13362)
- ► Δεκεμβρίου (19)
- ► Σεπτεμβρίου (54)
- ► Φεβρουαρίου (5586)
- ► Ιανουαρίου (5696)
-
►
2018
(66471)
- ► Δεκεμβρίου (5242)
- ► Σεπτεμβρίου (5478)
- ► Φεβρουαρίου (4835)
- ► Ιανουαρίου (5592)
-
►
2017
(44259)
- ► Δεκεμβρίου (5110)
- ► Σεπτεμβρίου (5105)
-
▼
2016
(7467)
- ► Δεκεμβρίου (514)
- ► Σεπτεμβρίου (1038)
-
▼
Φεβρουαρίου
(793)
-
▼
Φεβ 24
(50)
- Nanomaterials, Vol. 6, Pages 38: Thermal Plasma Sy...
- IJMS, Vol. 17, Pages 275: The Role of Sialyl-Tn in...
- Catalysts, Vol. 6, Pages 32: Production of Resvera...
- Atoms, Vol. 4, Pages 7: Guest Editor’s Notes on th...
- Sensors, Vol. 16, Pages 284: Towards Reliable and ...
- Humanities, Vol. 5, Pages 16: Enabling Narrative P...
- Sustainability, Vol. 8, Pages 198: An Integrated P...
- BioEssays 3∕2016
- BioEssays 3∕2016
- BioEssays – Next Issue
- Nanomaterials, Vol. 6, Pages 37: Supramolecular As...
- IJMS, Vol. 17, Pages 276: Integrative Analyses of ...
- IJMS, Vol. 17, Pages 278: Critical Overview of the...
- Pharmaceutics, Vol. 8, Pages 5: Venetoclax (ABT-19...
- IJMS, Vol. 17, Pages 271: Using Copy Number Altera...
- Polymers, Vol. 8, Pages 35: The Effect of Introduc...
- Water, Vol. 8, Pages 69: Support Vector Regression...
- Applied Sciences, Vol. 6, Pages 63: Novel Graphica...
- Cells, Vol. 5, Pages 8: Matefin/SUN-1 Phosphorylat...
- Magnetochemistry, Vol. 2, Pages 10: Rational Contr...
- Energies, Vol. 9, Pages 125: Public Engagement in ...
- JMSE, Vol. 4, Pages 17: Comparison of Human and Ca...
- Nanomaterials, Vol. 6, Pages 36: Nano-Welding of M...
- Sustainability, Vol. 8, Pages 199: Private–Public ...
- Toxins, Vol. 8, Pages 54: Polyphasic Approach Incl...
- Geosciences, Vol. 6, Pages 11: Utilizing HyspIRI P...
- Sensors, Vol. 16, Pages 278: Analysis of Forensic ...
- Minerals, Vol. 6, Pages 17: Uncertainty Representa...
- Materials, Vol. 9, Pages 125: Acid Neutralizing Ab...
- IJERPH, Vol. 13, Pages 254: Degradation of Tetracy...
- Genes, Vol. 7, Pages 10: Pseudo-Reference-Based As...
- The Protective Effects of 18β-Glycyrrhetinic Acid ...
- Intestine-specific homeobox (ISX) induces intestin...
- HCV kinetic and modeling analyses indicate similar...
- Validation of preoperative cardiopulmonary exercis...
- Randomised clinical trial: alginate (Gaviscon Adva...
- Irrigation versus suction alone during laparoscopi...
- Retrospective analysis of the influence of 25-hydr...
- Hepatitis B virus X protein reduces the stability ...
- Matched population-based study examining the risk ...
- Association of patient age at gastric bypass surge...
- Palliative treatment of anal fistulas in Crohn's d...
- Kaempferol inhibits cell proliferation and glycoly...
- Development of the Northwestern Esophageal Quality...
- Effectiveness and safety of vedolizumab induction ...
- Evaluation of the CDC recommendations for HCV test...
- Significance of neutrophil-to-lymphocyte ratio, pl...
- Years of life that could be saved from prevention ...
- Liver fat in adults with GH deficiency: comparison...
- Clinical significance of fibroblast growth factor ...
-
▼
Φεβ 24
(50)
Αναζήτηση αυτού του ιστολογίου
Τετάρτη 24 Φεβρουαρίου 2016
Water, Vol. 8, Pages 69: Support Vector Regression for Rainfall-Runoff Modeling in Urban Drainage: A Comparison with the EPA’s Storm Water Management Model
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Αλέξανδρος Γ. Σφακιανάκης Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,0030693260717...
-
heory of COVID-19 pathogenesis Publication date: November 2020Source: Medical Hypotheses, Volume 144Author(s): Yuichiro J. Suzuki ScienceD...
-
https://ift.tt/2MQ8Ai8
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.