Hypertension develops with chronically increased sodium intake when sodium that accumulates in the body can no longer be sequestered, extracellular fluid is expanded, and compensatory neural, hormonal, and pressure-natriuresis mechanisms fail. Sensing the amount of ingested sodium, by the stomach, is one mechanism by which sodium balance is regulated. The natriuresis following the ingestion of a certain amount of sodium may be due to an enterokine, gastrin, secreted by G-cells in the stomach and duodenum and released into the circulation. Circulating gastrin levels are 10-20-fold higher than those for cholecystokinin. Of all the gut hormones circulating in the plasma, gastrin is the one that is reabsorbed to the greatest extent by renal tubules. Gastrin, via its receptor, the cholecystokinin type B receptor (CCKBR), is natriuretic, in mammals including humans, caused by inhibition of renal sodium transport. Germline deletion of gastrin (Gast) or Cckbr gene in mice causes salt-sensitive hypertension. Selective silencing of Gast in the stomach and duodenum impairs the ability to excrete an oral sodium load and also increases blood pressure. Thus, the gastro-renal axis, mediated by gastrin, can complement pronatriuretic hormones, such as dopamine to increase sodium excretion after an oral sodium load. These studies in mice may be translatable to humans because the chromosomal loci of CCKBR and GAST are linked to human essential hypertension. Understanding the role of genes in the regulation of renal function and blood pressure may lead to the tailoring of anti-hypertensive treatment based on genetic make-up.
This article is protected by copyright. All rights reserved
from #Medicine via ola Kala on Inoreader http://ift.tt/1XdmkCw
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.