Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Κυριακή 24 Ιανουαρίου 2016

Effect of miR-146a/bFGF/PEG-PEI Nanoparticles on Inflammation Response and Tissue Regeneration of Human Dental Pulp Cells

Introduction. Inflammation in dental pulp cells (DPCs) initiated by Lipopolysaccharide (LPS) results in dental pulp necrosis. So far, whether there is a common system regulating inflammation response and tissue regeneration remains unknown. miR-146a is closely related to inflammation. Basic fibroblast growth factor (bFGF) is an important regulator for differentiation. Methods. To explore the effect of miR-146a/bFGF on inflammation and tissue regeneration, polyethylene glycol-polyethyleneimine (PEG-PEI) was synthesized, and physical characteristics were analyzed by dynamic light scattering and gel retardation analysis. Cell absorption, transfection efficiency, and cytotoxicity were assessed. Alginate gel was combined with miR-146a/PEG-PEI nanoparticles and bFGF. Drug release ratio was measured by ultraviolet spectrophotography. Proliferation and odontogenic differentiation of DPCs with 1 μg/mL LPS treatment were determined. Results. PEG-PEI prepared at N/P 2 showed complete gel retardation and smallest particle size and zeta potential. Transfection efficiency of PEG-PEI was higher than lipo2000. Cell viability decreased as N/P ratio increased. Drug release rate amounted to 70% at the first 12 h and then maintained slow release afterwards. Proliferation and differentiation decreased in DPCs with LPS treatment, whereas they increased in miR-146a/bFGF gel group. Conclusions. PEG-PEI is a promising vector for gene therapy. miR-146a and bFGF play critical roles in inflammation response and tissue regeneration of DPCs.

from #Medicine via ola Kala on Inoreader http://ift.tt/1OH8ipz
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.