Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data also in cheminformatics and related fields, the aim of research has shifted not only towards the development of algorithms of high predictive power but also towards the simplification of previously existing methods to obtain results more quickly. In the study, we tested two approaches belonging to the group of so-called 'extremely randomized methods'—Extreme Entropy Machine and Extremely Randomized Trees—for their ability to properly identify compounds that have activity towards particular protein targets. These methods were compared with their 'non-extreme' competitors, i.e., Support Vector Machine and Random Forest. The extreme approaches were not only found out to improve the efficiency of the classification of bioactive compounds, but they were also proved to be less computationally complex, requiring fewer steps to perform an optimization procedure.
from #Medicine via ola Kala on Inoreader http://ift.tt/1NZ7wUj
via IFTTT
Αρχειοθήκη ιστολογίου
-
►
2023
(138)
- ► Φεβρουαρίου (74)
- ► Ιανουαρίου (64)
-
►
2022
(849)
- ► Δεκεμβρίου (61)
- ► Σεπτεμβρίου (74)
- ► Φεβρουαρίου (65)
-
►
2021
(2936)
- ► Δεκεμβρίου (59)
- ► Σεπτεμβρίου (180)
- ► Φεβρουαρίου (325)
-
►
2020
(1624)
- ► Δεκεμβρίου (293)
- ► Σεπτεμβρίου (234)
- ► Φεβρουαρίου (28)
-
►
2019
(13362)
- ► Δεκεμβρίου (19)
- ► Σεπτεμβρίου (54)
- ► Φεβρουαρίου (5586)
- ► Ιανουαρίου (5696)
-
►
2018
(66471)
- ► Δεκεμβρίου (5242)
- ► Σεπτεμβρίου (5478)
- ► Φεβρουαρίου (4835)
- ► Ιανουαρίου (5592)
-
►
2017
(44259)
- ► Δεκεμβρίου (5110)
- ► Σεπτεμβρίου (5105)
-
►
2016
(7467)
- ► Δεκεμβρίου (514)
- ► Σεπτεμβρίου (1038)
- ► Φεβρουαρίου (793)
-
▼
2015
(2119)
- ► Δεκεμβρίου (940)
-
▼
Νοεμβρίου
(765)
-
▼
Νοε 09
(51)
- Medicine,New Articles,November 9th,2015
- Molecules, Vol. 20, Pages 20131-20145: Molecular D...
- Sensors, Vol. 15, Pages 28257-28270: The Mine Loco...
- Exacerbation of Dermatomyositis with Recurrence of...
- TRPM4 non-selective cation channels influence acti...
- Molecules, Vol. 20, Pages 20107-20117: Extremely R...
- IJMS, Vol. 16, Pages 26813-26831: Effect of Human ...
- IJMS, Vol. 16, Pages 26797-26812: The Function of ...
- IJMS, Vol. 16, Pages 26754-26769: Mobilization of ...
- IJMS, Vol. 16, Pages 26786-26796: Global Profiling...
- IJMS, Vol. 16, Pages 26770-26785: Numerical Analys...
- Molecules, Vol. 20, Pages 20118-20130: Design and ...
- Rapid bladder cancer cell detection from clinical ...
- Real-time imaging of cancer cell chemotaxis in pap...
- Amine neurotransmitters, inflammation and epitheli...
- IJERPH, Vol. 12, Pages 14244-14259: Factors Associ...
- IJERPH, Vol. 12, Pages 14216-14228: Physiological ...
- IJERPH, Vol. 12, Pages 14260-14274: Perceived Rele...
- IJERPH, Vol. 12, Pages 14229-14243: Variation in t...
- IJERPH, Vol. 12, Pages 14192-14215: Spatially Expl...
- IJERPH, Vol. 12, Pages 14275-14284: Associations b...
- Real-World Assessment of Clinical Outcomes in Pati...
- Acceptability of provider-initiated HIV testing as...
- Neonatal preintubation sedation: a national survey...
- Ambient temperature and prevalence of obesity: A n...
- Assessment of efficacy and safety of EUS-guided bi...
- Cirrhotic cardiomyopathy
- Epidemiology and healthcare resource utilization a...
- Gastric motor dysfunctions in Parkinson's disease:...
- Second-line treatment of metastatic gastric cancer...
- Trends in receipt and timing of multimodality ther...
- Features and progression of potential celiac disea...
- Vulnerability in elderly patients with gastrointes...
- Low risk of adenocarcinoma and high-grade dysplasi...
- Abdominal obesity and circulating metabolites: a t...
- Identification of patients at risk for colorectal ...
- Zinc intake and risk of Crohn’s disease and ulcera...
- Extensive modulation of the fecal metagenome in ch...
- Hepatitis C virus treatment as prevention in peopl...
- Hepatitis E infection in patients with severe alco...
- First report of an astrovirus type 5 gastroenterit...
- Clinical features of colorectal cancer patients in...
- Targeting host lipid synthesis and metabolism to i...
- Extracorporeal shock wave lithotripsy is a safe an...
- Selection of Single-Stranded DNA Molecular Recogni...
- Descemet’s Stripping Automated Endothelial Keratop...
- Dynamic Contrast-Enhanced CT Characterization of X...
- Effectiveness of workplace interventions in the pr...
- Transcriptome and Molecular Endocrinology Aspects ...
- Acute resistance exercise activates rapamycin-sens...
- Ascending aortic aneurysm caused by Mycobacterium ...
-
▼
Νοε 09
(51)
Αναζήτηση αυτού του ιστολογίου
Δευτέρα 9 Νοεμβρίου 2015
Molecules, Vol. 20, Pages 20107-20117: Extremely Randomized Machine Learning Methods for Compound Activity Prediction
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Αλέξανδρος Γ. Σφακιανάκης Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,0030693260717...
-
heory of COVID-19 pathogenesis Publication date: November 2020Source: Medical Hypotheses, Volume 144Author(s): Yuichiro J. Suzuki ScienceD...
-
https://ift.tt/2MQ8Ai8
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.