Publication date: Available online 30 October 2015
Source:Bioorganic & Medicinal Chemistry
Author(s): Jiaxin Cui, Mei Ding, Wei Deng, Yan Yin, Zhonghua Wang, Hong Zhou, Guofeng Sun, Yu Jiang, Yangbo Feng
Lim kinase (Limk), a proline/serine-rich sequence, can regulate the polymerization of the actin filaments by phosphorylating, and it is found to be highly involved in various human diseases. In this paper, 47 reported Limk1 inhibitors with bis-ary urea scaffold were used to design potent and selective Limk inhibitors by computational approaches. Firstly, the structure-Limk1 activity relationship models (3D-QSAR) and structure-Limk1/ROCK2 selectivity relationship models (3D-QSSR) were developed and both 3D-QSAR and 3D-QSSR models showed good correlative and predictive abilities. Then, the molecular docking and molecular dynamics (MD) simulations were employed to validate the optimal docking conformation and explore the binding affinities. Finally, five new compounds were designed and all of them exhibited good Limk1 inhibition and Limk1/ROCK2 selectivity after synthesis and biological evaluation, which demonstrated that the obtained information from computational studies were valuable to guide Limk inhibitors' design.
Graphical abstract
from #Medicine via ola Kala on Inoreader http://ift.tt/1LI9BD8
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.