Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Σάββατο 5 Ιανουαρίου 2019

Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks

Advanced Healthcare Materials Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks

Incorporating functional polymer brushes on a biodegradable structural material via surface‐initiated atomic transfer radical polymerization improves its interfacial interactions with adhesive proteins and cells, providing a platform to mimic in vivo cellular environments for regenerative medicine. Poly(ethyl acrylate) brushes polymerized on poly‐l‐lactic acid enhance its biological activity by inducing the formation of fibronectin nanonetworks which target cell adhesion and differentiation.


Abstract

Poly‐l‐lactic acid (PLLA) has been used as a biodegradable polymer for many years; the key characteristics of this polymer make it a versatile and useful resource for regenerative medicine. However, it is not inherently bioactive. Thus, here, a novel process is presented to functionalize PLLA surfaces with poly(ethyl acrylate) (PEA) brushes to provide biological functionality through PEA's ability to induce spontaneous organization of the extracellular matrix component fibronectin (FN) into physiological‐like nanofibrils. This process allows control of surface biofunctionality while maintaining PLLA bulk properties (i.e., degradation profile, mechanical strength). The new approach is based on surface‐initiated atomic transfer radical polymerization, which achieves a molecularly thin coating of PEA on top of the underlying PLLA. Beside surface characterization via atomic force microscopy, X‐ray photoelectron spectroscopy and water contact angle to measure PEA grafting, the biological activity of this surface modification is investigated. PEA brushes trigger FN organization into nanofibrils, which retain their ability to enhance adhesion and differentiation of C2C12 cells. The results demonstrate the potential of this technology to engineer controlled microenvironments to tune cell fate via biologically active surface modification of an otherwise bioinert biodegradable polymer, gaining wide use in tissue engineering applications.



http://bit.ly/2BZTkuR

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.