Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Σάββατο 1 Σεπτεμβρίου 2018

Cancers, Vol. 10, Pages 300: Targeted UPLC-MS Metabolic Analysis of Human Faeces Reveals Novel Low-Invasive Candidate Markers for Colorectal Cancer

Cancers, Vol. 10, Pages 300: Targeted UPLC-MS Metabolic Analysis of Human Faeces Reveals Novel Low-Invasive Candidate Markers for Colorectal Cancer

Cancers doi: 10.3390/cancers10090300

Authors: Joaquin Cubiella Marc Clos-Garcia Cristina Alonso Ibon Martinez-Arranz Miriam Perez-Cormenzana Ziortza Barrenetxea Jesus Berganza Isabel Rodríguez-Llopis Mauro D'Amato Luis Bujanda Marta Diaz-Ondina Juan M. Falcón-Pérez

Low invasive tests with high sensitivity for colorectal cancer and advanced precancerous lesions will increase adherence rates, and improve clinical outcomes. We have performed an ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-(TOF) MS)-based metabolomics study to identify faecal biomarkers for the detection of patients with advanced neoplasia. A cohort of 80 patients with advanced neoplasia (40 advanced adenomas and 40 colorectal cancers) and 49 healthy subjects were analysed in the study. We evaluated the faecal levels of 105 metabolites including glycerolipids, glycerophospholipids, sterol lipids and sphingolipids. We found 18 metabolites that were significantly altered in patients with advanced neoplasia compared to controls. The combinations of seven metabolites including ChoE(18:1), ChoE(18:2), ChoE(20:4), PE(16:0/18:1), SM(d18:1/23:0), SM(42:3) and TG(54:1), discriminated advanced neoplasia patients from healthy controls. These seven metabolites were employed to construct a predictive model that provides an area under the curve (AUC) median value of 0.821. The inclusion of faecal haemoglobin concentration in the metabolomics signature improved the predictive model to an AUC of 0.885. In silico gene expression analysis of tumour tissue supports our results and puts the differentially expressed metabolites into biological context, showing that glycerolipids and sphingolipids metabolism and GPI-anchor biosynthesis pathways may play a role in tumour progression.



https://ift.tt/2MJY6Vy

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.