Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Πέμπτη 22 Φεβρουαρίου 2018

Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels

Publication date: Available online 13 February 2018
Source:The Spine Journal
Author(s): Li Yao, Nikol Flynn
Background ContextAdvances in the development of biomaterials and stem cell therapy provide a promising approach to regenerating degenerated discs. The normal nucleus pulposus (NP) cells exhibit the similar phenotype as chondrocytes. Because dental pulp stem cells (DPSCs) can be differentiated into chondrogenic cells, the DPSCs and DPSCs-derived chondrogenic cells encapsulated in type I and type II collagen hydrogels can potentially be transplanted into degenerated nucleus pulposus (NP) to repair damaged tissue. The motility of transplanted cells is critical because the cells need to migrate away from the hydrogels containing the cells of high density and disperse into the NP tissue after implantation.PurposeThe purpose of this study was to determine the motility of DPSC and DPSC-derived chondrogenic cells in type I and type II collagen hydrogels.Study Design/SettingThe time lapse imaging that recorded cell migration was analyzed to quantify the cell migration velocity and distance.MethodsThe cell viability of DPSCs in native or 4S-StarPEG – crosslinked type I and type II collagen hydrogels was determined using LIVE/DEAD® cell viability assay and AlamarBlue® assay. DPSCs were differentiated into chondrogenic cells. The migration of DPSCs and DPSC-derived chondrogenic cells in these hydrogels was recorded using a time lapse imaging system. This study was funded by Regional Institute on Aging and Wichita Medical Research and Education Foundation and the authors declare no competing interest.ResultDPSCs showed high cell viability in non-crosslinked and crosslinked collagen hydrogels. DPSCs migrated in collagen hydrogels, and the cell migration speed was not significantly different in either type I collagen or type II collagen hydrogels. The migration speed of DPSC-derived chondrogenic cells was higher in type I collagen hydrogel than in type II collagen hydrogel. Crosslinking of type I collagen with 4S-StarPEG significantly reduced the cell migration speed of DPSC-derived chondrogenic cells.ConclusionsAfter implantation of collagen hydrogels encapsulating DPSCs or DPSC-derived chondrogenic cells, the cells can potentially migrate from the hydrogels and migrate into the NP tissue. This study also explored the differential cell motility of DPSCs and DPSC-derived chondrogenic cells in these collagen hydrogels.



http://ift.tt/2BL4C7E

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.