Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Τετάρτη 24 Ιανουαρίου 2018

Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique

Abstract

Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large-scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)-rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb–Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less-toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point.

Thumbnail image of graphical abstract

In this work, Sn-rich perovskite solar cells with large grains are fabricated from Pb–Sn eutectic alloy in the liquid phase by using a chemical vapor deposition technique, resulting in a device power conversion efficiency of 14.04% which is comparable with that of a pure Pb devices and among the highest for Sn-rich binary Sn/Pb metal perovskite solar cells.



http://ift.tt/2E3itFB

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.