Abstract
Light-weight aluminum (Al) alloys have widespread applications. However, most Al alloys have inherently low mechanical strength. Nanotwins can induce high strength and ductility in metallic materials. Yet, introducing high-density growth twins into Al remains difficult due to its ultrahigh stacking-fault energy. In this study, it is shown that incorporating merely several atomic percent of Fe solutes into Al enables the formation of nanotwinned (nt) columnar grains with high-density 9R phase in Al(Fe) solid solutions. The nt Al–Fe alloy coatings reach a maximum hardness of ≈5.5 GPa, one of the strongest binary Al alloys ever created. In situ uniaxial compressions show that the nt Al–Fe alloys populated with 9R phase have flow stress exceeding 1.5 GPa, comparable to high-strength steels. Molecular dynamics simulations reveal that high strength and hardening ability of Al–Fe alloys arise mainly from the high-density 9R phase and nanoscale grain sizes.
Nanostructured Al–Fe solid solution alloys with high-density nanotwins and 9R phase have a maximum hardness of ≈5.5 GPa and a flow stress in the range of 1–1.5 GPa, comparable to a variety of high-strength martensitic steels. Nanotwins and 9R phase stabilized by Fe solutes introduce high strength, and significant plasticity.
http://ift.tt/2DYt5Wb
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.