Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Τετάρτη 27 Δεκεμβρίου 2017

Tension-Activated Delivery of Small Molecules and Proteins from Superhydrophobic Composites

Abstract

The fabrication and performance of mechanically responsive multilayer superhydrophobic composites are reported. The application of tensile strain triggers the release of small molecules and proteins from these composites, with different tensile strain magnitudes and coating thickness influencing agent release. These mechanoresponsive composites consist of an absorbent drug core surrounded by an electrosprayed superhydrophobic protective coating that limits drug release in the absence of tensile strain. Coating thickness and applied tensile strain control release of chemotherapeutic cisplatin and enzyme β-galactosidase, as measured by atomic absorption and UV–vis spectrophotometry, respectively, with preserved in vitro activity. Such mechanically responsive drug delivery devices, when coupled to existing dynamic mechanical forces in the body or integrated with mechanical medical devices, such as stents, will provide local controlled dosing.

Thumbnail image of graphical abstract

Stretching triggers the release of agents from multilayered superhydrophobic composites. Both the strain magnitude and the superhydrophobic barrier coating thickness modulate release, resulting in the graded delivery of dye, chemotherapeutic cisplatin, and enzyme β-galactosidase with preserved in vitro activity.



http://ift.tt/2BIdCaI

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.