Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Τετάρτη 27 Δεκεμβρίου 2017

Fluorination Enhances Serum Stability of Bioreducible Poly(amido amine) Polyplexes and Enables Efficient Intravenous siRNA Delivery

Abstract

The use of small interfering RNA (siRNA) in cancer treatment has been limited by the lack of effective systemic delivery methods. Although synthetic polycations have been widely explored in siRNA delivery, polycation/siRNA polyplexes often suffer from insufficient stability in vivo. Here, rationally designed siRNA delivery systems that meet the requirements for systemic siRNA delivery to distant tumors are reported. The hypothesis that modular design of delivery systems based on poly(amido amine)s that combine fluorination for systemic stability with bioreducibility for easy intracellular siRNA release, and PEGylation for improved safety and colloidal stability will overcome problems with contradicting siRNA delivery demands is tested. PEGylated, fluorinated, and bioreducible copolymers (PEG-PCD-F) with different degree of fluorination are thus synthesized. The fluorinated copolymers readily formed polyplexes with siRNA and achieved greatly improved gene silencing efficacy in multiple cell lines in vitro when compared with nonfluorinated controls. The results show fluorination-induced enhancement of stability, cellular uptake, and endosomal escape of the polyplexes, while exhibiting efficient siRNA release in reducing intracellular environment. PEG-PCD-F polyplexes with siRNA against Bcl2 inhibit breast tumor growth following systemic intravenous administration. The results provide strong evidence of successful combination of bioreducibility with fluorination and PEGylation to achieve systemic siRNA polyplex delivery.

Thumbnail image of graphical abstract

A modular strategy to the design of small interfering RNA (siRNA) polyplexes is reported. The approach combines fluorination, bioreducibility, and PEGylation. It improves serum stability due to fluorous interactions and leads to facile intracellular siRNA release due to disulfide reduction. Improved colloidal stability is contributed by the poly(ethylene glycol). Using siBcl2, the polyplexes inhibit tumor growth following intravenous administration.



http://ift.tt/2BJW7XT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.