Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Τετάρτη 25 Οκτωβρίου 2017

In Situ Coupling Strategy for the Preparation of FeCo Alloys and Co4N Hybrid for Highly Efficient Oxygen Evolution

Abstract

An in situ coupling approach is developed to create a new highly efficient and durable cobalt-based electrocatalyst for the oxygen evolution reaction (OER). Using a novel cyclotetramerization, a task-specific bimetallic phthalocyanine-based nanoporous organic framework is successfully built as a precursor for the carbonization synthesis of a nonprecious OER electrocatalyst. The resultant material exhibits an excellent OER activity with a low overpotential of 280 mV at a current density of 10 mA cm−2 and high durability in an alkaline medium. This impressive result ranks among the best from known Co-based OER catalysts under the same conditions. The simultaneous installation of multiple diverse cobalt-based active sites, including FeCo alloys and Co4N nanoparticles, plays a critical role in achieving this promising OER performance. This innovative approach not only enables high-performance OER activity to be achieved but simultaneously provides a means to control the surface features, thereby tuning the catalytic property of the material.

Thumbnail image of graphical abstract

A new highly efficient and durable cobalt-based oxygen evolution reaction (OER) electrocatalyst is developed by an in situ coupling approach. A bimetallic phthalocyanine-based framework is built for the construction of the desirable catalyst. The material exhibits an excellent OER activity with a low overpotential of 280 mV at 10 mA cm−2 and high durability in an alkaline medium.



http://ift.tt/2lfNbpg

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.