Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Παρασκευή 25 Αυγούστου 2017

Synthetic Biomaterials to Rival Nature's Complexity—a Path Forward with Combinatorics, High-Throughput Discovery, and High-Content Analysis

Cells in tissue receive a host of soluble and insoluble signals in a context-dependent fashion, where integration of these cues through a complex network of signal transduction cascades will define a particular outcome. Biomaterials scientists and engineers are tasked with designing materials that can at least partially recreate this complex signaling milieu towards new materials for biomedical applications. In this progress report, recent advances in high throughput techniques and high content imaging approaches that are facilitating the discovery of efficacious biomaterials are described. From microarrays of synthetic polymers, peptides and full-length proteins, to designer cell culture systems that present multiple biophysical and biochemical cues in tandem, it is discussed how the integration of combinatorics with high content imaging and analysis is essential to extracting biologically meaningful information from large scale cellular screens to inform the design of next generation biomaterials.

Thumbnail image of graphical abstract

Recent advances in biomaterials discovery aided by combinatorics, high-throughput arraying, and high content analysis are discussed. Synthetic polymer libraries, extracellular matrix protein and peptide microarrays are explored, and new tools for multivariate systems that are guiding the development of 3D model tissues towards next-generation assays for biomedicine and biotechnology are discussed.



http://ift.tt/2gcfdjn

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.