Structural proteins from naturally occurring materials are an inspiring template for material design and synthesis at multiple scales. The ability to control the assembly and conformation of such materials offers the opportunity to define fabrication approaches that recapitulate the dimensional hierarchy and structure–function relationships found in nature. A simple and versatile directed assembly method of silk fibroin, which allows the design of structures across multiple dimensional scales by generating and tuning structural color in large-scale, macro defect-free colloidally assembled 3D nanostructures in the form of silk inverse opals (SIOs) is reported. This approach effectively combines bottom-up and top-down techniques to obtain control on the nanoscale (through silk conformational changes), microscale (through patterning), and macroscale (through colloidal assembly), ultimately resulting in a controllable photonic lattice with predefined spectral behavior, with a resulting palette spanning almost the entire visible range. As a demonstration of the approach, examples of "multispectral" SIOs, paired with theoretical calculations and analysis of their response as a function of changes of lattice constants and refractive index contrast are illustrated.
A new kind of amorphous silk-based large-scale inverse opal is demonstrated. The structural color is reconfigured by non-contact exposure to either water vapor or UV light, which both induce controllable, conformational changes on the nanoscale. Based on this, sub-millimeter, multispectral patterns are defined. Tuning of the colorimetric response is also obtained by infiltrating the silk inverse opals voids with liquids with different of different refractive index.
http://ift.tt/2v7lzm0
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.