An ideal neural device enables long-term, sensitive, and selective communication with the nervous system. To accomplish this task, the material interface should mimic the biophysical and the biochemical properties of neural tissue. By contrast, microfabricated neural probes utilize hard metallic conductors, which hinder their long-term performance because these materials are not intrinsically similar to soft neural tissue. This study reports a method for the fabrication of monodisperse conducting polymer microcups. It is demonstrated that the physical surface properties of conducting polymer microcups can be precisely modulated to control electrical properties and drug-loading/release characteristics.
An ideal neural device enables long-term, sensitive, and selective bidirectional communications with neurons. The material interface should mimic the biophysical and biochemical properties of neural tissue. This study reports a method for the fabrication of monodisperse conducting polymer microcups. It is demonstrated that the physical surface properties of conducting polymer microcups can be precisely modulated to control electrical properties and drug-loading/release characteristics.
http://ift.tt/2vXxs1c
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.