Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Πέμπτη 20 Ιουλίου 2017

Mediastinal injury is the strongest predictor of mortality in mounted blast amongst UK deployed forces

Publication date: Available online 19 July 2017
Source:Injury
Author(s): A. Phillip Pearce, Anthony M.J. Bull, Jonathon C. Clasper
BackgroundBlast injury has been the most common cause of morbidity and mortality encountered by UK forces during recent conflicts. Injuries sustained by blast are categorised by the injuring component of the explosion and depend upon physical surroundings. Previous work has established that head injuries and intra cavity haemorrhage are the major causes of death following exposure to under body (mounted) blast but has failed to explore the precise nature of these torso injuries nor the effect of particular injuries upon survival. This study examines the patterns of torso injury within the mounted blast environment in order to understand the effect of these injuries upon survivability.MethodsThis retrospective study examined the UK Joint Theatre Trauma Registry to determine precise injury patterns of mounted blast casualties within a 13year period of UK military deployments. Survival rates of individual injuries were compared and a multivariable logistic regression model was developed in order to assess the effect that each injury had upon likelihood of death.Results426 mounted casualties were reviewed of whom 129 did not survive. Median NISS and ISS for non-survivors was found to be 75. Torso injuries were significantly more common amongst non-survivors than survivors and high case fatality rates were associated with all haemorrhagic torso injuries. Multivariable analysis shows that mediastinal injuries have the largest odds ratio for mortality (20.4) followed by lung laceration and head injury.ConclusionsNon-compressible torso haemorrhage is associated with mortality amongst mounted blast. Of this group, mediastinal injury is the strongest predictor of death and could be considered as a surrogate marker of lethality. Future work to link blast loading characteristics with specific injury patterns will inform the design of mitigating strategies in order to improve survivability of underbody blast



http://ift.tt/2vnRvDX

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.