Recent research into improving the effectiveness of forest inventory management using airborne LiDAR data has focused on developing advanced theories in data analytics. Furthermore, supervised learning as a predictive model for classifying tree genera (and species, where possible) has been gaining popularity in order to minimize this labor-intensive task. However, bottlenecks remain that hinder the immediate adoption of supervised learning methods. With supervised classification, training samples are required for learning the parameters that govern the performance of a classifier, yet the selection of training data is often subjective and the quality of such samples is critically important. For LiDAR scanning in forest environments, the quantification of data quality is somewhat abstract, normally referring to some metric related to the completeness of individual tree crowns; however, this is not an issue that has received much attention in the literature. Intuitively the choice of training samples having varying quality will affect classification accuracy. In this paper a Diversity Index (DI) is proposed that characterizes the diversity of data quality (Qi) among selected training samples required for constructing a classification model of tree genera. The training sample is diversified in terms of data quality as opposed to the number of samples per class. The diversified training sample allows the classifier to better learn the positive and negative instances and; therefore; has a higher classification accuracy in discriminating the "unknown" class samples from the "known" samples. Our algorithm is implemented within the Random Forests base classifiers with six derived geometric features from LiDAR data. The training sample contains three tree genera (pine; poplar; and maple) and the validation samples contains four labels (pine; poplar; maple; and "unknown"). Classification accuracy improved from 72.8%; when training samples were selected randomly (with stratified sample size); to 93.8%; when samples were selected with additional criteria; and from 88.4% to 93.8% when an ensemble method was used.
http://ift.tt/2aEZdhi
Αρχειοθήκη ιστολογίου
-
►
2023
(138)
- ► Φεβρουαρίου (74)
- ► Ιανουαρίου (64)
-
►
2022
(849)
- ► Δεκεμβρίου (61)
- ► Σεπτεμβρίου (74)
- ► Φεβρουαρίου (65)
-
►
2021
(2936)
- ► Δεκεμβρίου (59)
- ► Σεπτεμβρίου (180)
- ► Φεβρουαρίου (325)
-
►
2020
(1624)
- ► Δεκεμβρίου (293)
- ► Σεπτεμβρίου (234)
- ► Φεβρουαρίου (28)
-
►
2019
(13362)
- ► Δεκεμβρίου (19)
- ► Σεπτεμβρίου (54)
- ► Φεβρουαρίου (5586)
- ► Ιανουαρίου (5696)
-
►
2018
(66471)
- ► Δεκεμβρίου (5242)
- ► Σεπτεμβρίου (5478)
- ► Φεβρουαρίου (4835)
- ► Ιανουαρίου (5592)
-
►
2017
(44259)
- ► Δεκεμβρίου (5110)
- ► Σεπτεμβρίου (5105)
-
▼
2016
(7467)
- ► Δεκεμβρίου (514)
- ► Σεπτεμβρίου (1038)
-
▼
Αυγούστου
(935)
-
▼
Αυγ 08
(50)
- An optimised assay for quantitative, high-throughp...
- Fluorescence detection of single-nucleotide differ...
- Remote Sensing, Vol. 8, Pages 646: Maximizing the ...
- Biosensors, Vol. 6, Pages 43: Effects of Surface E...
- Molecules, Vol. 21, Pages 1031: New Sesquiterpenen...
- Polymers, Vol. 8, Pages 289: Key Role of Reinforci...
- IJERPH, Vol. 13, Pages 802: Effects of Long-Term E...
- IJMS, Vol. 17, Pages 1287: β-Ketoacyl-acyl Carrier...
- Energies, Vol. 9, Pages 622: The Energy and Enviro...
- Nutrients, Vol. 8, Pages 484: Sex-Specific Sociode...
- Sensors, Vol. 16, Pages 1251: A Study of a Handrim...
- Sensors, Vol. 16, Pages 1254: Reversed Three-Dimen...
- IJERPH, Vol. 13, Pages 798: The Regularities in In...
- Toxins, Vol. 8, Pages 235: A Rapid Assay to Detect...
- IJERPH, Vol. 13, Pages 797: Quality of Life and It...
- Buildings, Vol. 6, Pages 29: The Importance of Hea...
- Atmosphere, Vol. 7, Pages 104: Retention of Atmosp...
- IJGI, Vol. 5, Pages 140: Design and Implementation...
- Education Sciences, Vol. 6, Pages 26: “We’re One T...
- Religions, Vol. 7, Pages 102: The Dilemmas of Mono...
- Remote Sensing, Vol. 8, Pages 638: Estimation of E...
- Polymers, Vol. 8, Pages 285: Enhancing the Adhesiv...
- Micromachines, Vol. 7, Pages 139: A Reconfigurable...
- Sustainability, Vol. 8, Pages 765: Sustainability ...
- Sensors, Vol. 16, Pages 1252: Analysis of the Bias...
- Information, Vol. 7, Pages 50: Smart Homes and Sen...
- The Diagnosis of Iliac Bone Destruction in Childre...
- In Silico Prediction of Gamma-Aminobutyric Acid Ty...
- Sprinkling of neural dust opens door to electroceu...
- Diagnosis accuracy of transcutaneous bilirubinomet...
- Sofosbuvir plus daclatasvir with or without ribavi...
- Prediction models of mortality in acute pancreatit...
- Vitamin D deficiency in non-alcoholic fatty liver ...
- Methylation quantitative trait loci within the TOM...
- Use of antibiotics among patients with cirrhosis a...
- A randomized, double-blind, placebo-controlled pha...
- Validity and reliability of the Bristol Stool Form...
- Role of conserved E2 residue W420 in receptor bind...
- Risk of gastric cancer among patients with intesti...
- Relation of serum irisin level with metabolic and ...
- Association between results of a gene expression s...
- A case of acute esophageal necrosis and duodenal d...
- Epidemiology of hepatitis C virus and genotype dis...
- AGA establishes NIH-funded registry to track fecal...
- Sensors, Vol. 16, Pages 1249: Comparative Study of...
- Sustainability, Vol. 8, Pages 767: Research of Sus...
- Mathematics, Vol. 4, Pages 50: Complete Classifica...
- IJGI, Vol. 5, Pages 139: Spatiotemporal Modeling o...
- IJGI, Vol. 5, Pages 138: Occlusion-Free Visualizat...
- Life, Vol. 6, Pages 32: Ultra Large Gene Families:...
-
▼
Αυγ 08
(50)
- ► Φεβρουαρίου (793)
Αναζήτηση αυτού του ιστολογίου
Δευτέρα 8 Αυγούστου 2016
Remote Sensing, Vol. 8, Pages 646: Maximizing the Diversity of Ensemble Random Forests for Tree Genera Classification Using High Density LiDAR Data
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Αλέξανδρος Γ. Σφακιανάκης Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,0030693260717...
-
heory of COVID-19 pathogenesis Publication date: November 2020Source: Medical Hypotheses, Volume 144Author(s): Yuichiro J. Suzuki ScienceD...
-
https://ift.tt/2MQ8Ai8
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.