Pupylation plays a key role in regulating various protein functions as a crucial posttranslational modification of prokaryotes. In order to understand the molecular mechanism of pupylation, it is important to identify pupylation substrates and sites accurately. Several computational methods have been developed to identify pupylation sites because the traditional experimental methods are time-consuming and labor-sensitive. With the existing computational methods, the experimentally annotated pupylation sites are used as the positive training set and the remaining nonannotated lysine residues as the negative training set to build classifiers to predict new pupylation sites from the unknown proteins. However, the remaining nonannotated lysine residues may contain pupylation sites which have not been experimentally validated yet. Unlike previous methods, in this study, the experimentally annotated pupylation sites were used as the positive training set whereas the remaining nonannotated lysine residues were used as the unlabeled training set. A novel method named PUL-PUP was proposed to predict pupylation sites by using positive-unlabeled learning technique. Our experimental results indicated that PUL-PUP outperforms the other methods significantly for the prediction of pupylation sites. As an application, PUL-PUP was also used to predict the most likely pupylation sites in nonannotated lysine sites.
http://ift.tt/2aDPtal
Αρχειοθήκη ιστολογίου
-
►
2023
(138)
- ► Φεβρουαρίου (74)
- ► Ιανουαρίου (64)
-
►
2022
(849)
- ► Δεκεμβρίου (61)
- ► Σεπτεμβρίου (74)
- ► Φεβρουαρίου (65)
-
►
2021
(2936)
- ► Δεκεμβρίου (59)
- ► Σεπτεμβρίου (180)
- ► Φεβρουαρίου (325)
-
►
2020
(1624)
- ► Δεκεμβρίου (293)
- ► Σεπτεμβρίου (234)
- ► Φεβρουαρίου (28)
-
►
2019
(13362)
- ► Δεκεμβρίου (19)
- ► Σεπτεμβρίου (54)
- ► Φεβρουαρίου (5586)
- ► Ιανουαρίου (5696)
-
►
2018
(66471)
- ► Δεκεμβρίου (5242)
- ► Σεπτεμβρίου (5478)
- ► Φεβρουαρίου (4835)
- ► Ιανουαρίου (5592)
-
►
2017
(44259)
- ► Δεκεμβρίου (5110)
- ► Σεπτεμβρίου (5105)
-
▼
2016
(7467)
- ► Δεκεμβρίου (514)
- ► Σεπτεμβρίου (1038)
-
▼
Αυγούστου
(935)
-
▼
Αυγ 07
(29)
- JMSE, Vol. 4, Pages 46: Application of a Spectral ...
- Molecules, Vol. 21, Pages 1028: Glutamine Syntheta...
- Forests, Vol. 7, Pages 174: Major Changes in Growt...
- Crystals, Vol. 6, Pages 90: Simulation of Polymer ...
- Religions, Vol. 7, Pages 98: Contemplative Science...
- Entropy, Vol. 18, Pages 284: A Five Species Cyclic...
- New euprimate postcrania from the early Eocene of ...
- Challenges and successes for the grantees and the ...
- Layered Alginate Constructs: A Platform for Co-cul...
- Correlative Light- and Electron Microscopy Using Q...
- Fabrication of a Dipole-assisted Solid Phase Extra...
- Amplification-Free Detection of Circulating microR...
- Membrane Stabilization and Detoxification of Aceta...
- Health Care Providers’ Knowledge and Practice Gap ...
- Hydrogen peroxide mediated mitochondrial UNG1-PRDX...
- 4-Hydroxyhexenal and 4-hydroxynonenal are mediator...
- Quercetin reduces manic-like behavior and brain ox...
- Data of intracellular insulin protein reduced by a...
- Pulse Wave Variation during the Menstrual Cycle in...
- Examining Anxiety Sensitivity as an Explanatory Co...
- Chemomics-Integrated Proteomics Analysis of Jie-Ge...
- Cloning, Expression, and Characterization of a Nov...
- High Mobility Group Box1 Protein Is Involved in En...
- Modulation of Bcl-x Alternative Splicing Induces A...
- No fixed item limit in visuospatial working memory
- Expression Profile of p53 and p21 in Large Bowel M...
- Comprehensive Evaluation of Personal, Clinical, an...
- Positive-Unlabeled Learning for Pupylation Sites P...
- Influence of Botulinumtoxin A on the Expression of...
-
▼
Αυγ 07
(29)
- ► Φεβρουαρίου (793)
Αναζήτηση αυτού του ιστολογίου
Κυριακή 7 Αυγούστου 2016
Positive-Unlabeled Learning for Pupylation Sites Prediction
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Αλέξανδρος Γ. Σφακιανάκης Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,0030693260717...
-
heory of COVID-19 pathogenesis Publication date: November 2020Source: Medical Hypotheses, Volume 144Author(s): Yuichiro J. Suzuki ScienceD...
-
https://ift.tt/2MQ8Ai8
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.