Publication date: 1 December 2016
Source:Talanta, Volume 161
Author(s): Regina Aroca-Santos, John C. Cancilla, Enrique S. Pariente, José S. Torrecilla
The identification and quantification of binary blends of refined olive oil with four different extra virgin olive oil (EVOO) varietals (Picual, Cornicabra, Hojiblanca and Arbequina) was carried out with a simple method based on combining visible spectroscopy and non-linear artificial neural networks (ANNs).The data obtained from the spectroscopic analysis was treated and prepared to be used as independent variables for a multilayer perceptron (MLP) model. The model was able to perfectly classify the EVOO varietal (100% identification rate), whereas the error for the quantification of EVOO in the mixtures containing between 0% and 20% of refined olive oil, in terms of the mean prediction error (MPE), was 2.14%. These results turn visible spectroscopy and MLP models into a trustworthy, user-friendly, low-cost technique which can be implemented on-line to characterize olive oil mixtures containing refined olive oil and EVOOs.
Graphical abstract
http://ift.tt/2bA5ywY
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.