Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Δευτέρα 27 Ιουνίου 2016

Peptide drugs accelerate BMP-2-induced calvarial bone regeneration and stimulate osteoblast differentiation through mTORC1 signaling

Both W9 and OP3-4 were known to bind the receptor activator of NF-κB ligand (RANKL), inhibiting osteoclastogenesis. Recently, both peptides were shown to stimulate osteoblast differentiation; however, the mechanism underlying the activity of these peptides remains to be clarified. A primary osteoblast culture showed that rapamycin, an mTORC1 inhibitor, which was recently demonstrated to be an important serine/threonine kinase for bone formation, inhibited the peptide-induced alkaline phosphatase activity. Furthermore, both peptides promoted the phosphorylation of Akt and S6K1, an upstream molecule of mTORC1 and the effector molecule of mTORC1, respectively. In the in vivo calvarial defect model, W9 and OP3-4 accelerated BMP-2-induced bone formation to a similar extent, which was confirmed by histomorphometric analyses using fluorescence images of undecalcified sections. Our data suggest that these RANKL-binding peptides could stimulate the mTORC1 activity, which might play a role in the acceleration of BMP-2-induced bone regeneration by the RANKL-binding peptides.

Thumbnail image of graphical abstract

Micro CT and fluorescent images revealed that two RANKL-binding peptides, W9 and OP3-4, could equally accelerate BMP-2-induced local bone regeneration in a murine calvarial defect model. The yellow line shows the site of the reconstruction images in the middle panel. White lines show the size of the original defect.



from #Medicine via ola Kala on Inoreader http://ift.tt/29f8C05
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.