Αρχειοθήκη ιστολογίου

Αναζήτηση αυτού του ιστολογίου

Δευτέρα 28 Μαρτίου 2016

Remote Sensing, Vol. 8, Pages 289: Hyperspectral Anomaly Detection Based on Low-Rank Representation and Learned Dictionary

In this paper, a novel hyperspectral anomaly detector based on low-rank representation (LRR) and learned dictionary (LD) has been proposed. This method assumes that a two-dimensional matrix transformed from a three-dimensional hyperspectral imagery can be decomposed into two parts: a low rank matrix representing the background and a sparse matrix standing for the anomalies. The direct application of LRR model is sensitive to a tradeoff parameter that balances the two parts. To mitigate this problem, a learned dictionary is introduced into the decomposition process. The dictionary is learned from the whole image with a random selection process and therefore can be viewed as the spectra of the background only. It also requires a less computational cost with the learned dictionary. The statistic characteristic of the sparse matrix allows the application of basic anomaly detection method to obtain detection results. Experimental results demonstrate that, compared to other anomaly detection methods, the proposed method based on LRR and LD shows its robustness and has a satisfactory anomaly detection result.

from #Medicine via ola Kala on Inoreader http://ift.tt/1LTz9Rv
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.