Carotid artery diseases due to plaque buildup at the carotid bifurcation are a leading cause of stroke. Accurate plaque quantification and characterization of plaque composition and morphology by magnetic resonance imaging(MRI) is essential to identifying high-risk patients. Difficulties in detecting plaque, which is physically small, and the unique physiological structure of the carotid artery make use of a radio frequency (RF) coil array with high resolution, large longitudinal coverage, and deep penetration ideal for clinical examinations. The goal of this project was to design and fabricate a sensitive RF coil array with sufficient imaging coverage and signal-to-noise ratio(SNR) for carotid arteryimaging at 3 T.
Based on clinical requirements and the anatomical structure of the human carotid artery, an 8-channel carotid coil array was designed and fabricated for 3 T MRI of the carotid artery in humans. The performance of the proposed 8-channel carotid coil array was validated through bench tests and MR imaging experiments on a 3 T whole body MRI scanner. Its performance was also compared experimentally to the performance of a commercial 4-channel phased array carotid coil designed by Machnet BV (Machnet BV coil, Roden, Netherlands).
The 8-channel carotid coil array performed significantly better in imaging the carotid artery than the commercial 4-channel Machnet BV coil in terms of the SNR, coverage, and penetration depth. In parallel imaging, the proposed 8-channel carotid coil array demonstrated a much lower maximum value and average value of the geometry factor in the region of interest. Carotid arteryimages acquired in vivo using the proposed 8-channel carotid arterycoil and the commercial 4-channel Machnet BV coil were also compared, demonstrating the former's potential for clinical diagnosis.
Based on the analyses of phantom and in vivoimaging studies, the proposed 8-channel carotid coil array has the potential for use in clinical diagnosis, performing better in terms of SNR,imaging coverage, and penetration depth than the commercial 4-channel carotid arterycoil array at 3 T. In future studies, the proposed 8-channel carotid coil array can also serve as an important part of a large-scale multichannel coil array for imaging the whole carotid artery system, including the extracranial and intracranial arteries.
from #Medicine via ola Kala on Inoreader http://ift.tt/1VEJ93a
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.