Accurate land cover classification information is a critical variable for many applications. This study presents a method to classify land cover using the fusion data of airborne discrete return LiDAR (Light Detection and Ranging) and CASI (Compact Airborne Spectrographic Imager) hyperspectral data. Four LiDAR-derived images (DTM, DSM, nDSM, and intensity) and CASI data (48 bands) with 1 m spatial resolution were spatially resampled to 2, 4, 8, 10, 20 and 30 m resolutions using the nearest neighbor resampling method. These data were thereafter fused using the layer stacking and principal components analysis (PCA) methods. Land cover was classified by commonly used supervised classifications in remote sensing images, i.e., the support vector machine (SVM) and maximum likelihood (MLC) classifiers. Each classifier was applied to four types of datasets (at seven different spatial resolutions): (1) the layer stacking fusion data; (2) the PCA fusion data; (3) the LiDAR data alone; and (4) the CASI data alone. In this study, the land cover category was classified into seven classes, i.e., buildings, road, water bodies, forests, grassland, cropland and barren land. A total of 56 classification results were produced, and the classification accuracies were assessed and compared. The results show that the classification accuracies produced from two fused datasets were higher than that of the single LiDAR and CASI data at all seven spatial resolutions. Moreover, we find that the layer stacking method produced higher overall classification accuracies than the PCA fusion method using both the SVM and MLC classifiers. The highest classification accuracy obtained (OA = 97.8%, kappa = 0.964) using the SVM classifier on the layer stacking fusion data at 1 m spatial resolution. Compared with the best classification results of the CASI and LiDAR data alone, the overall classification accuracies improved by 9.1% and 19.6%, respectively. Our findings also demonstrated that the SVM classifier generally performed better than the MLC when classifying multisource data; however, none of the classifiers consistently produced higher accuracies at all spatial resolutions.
from #Medicine via ola Kala on Inoreader http://ift.tt/1J30Tl9
via IFTTT
Αρχειοθήκη ιστολογίου
-
►
2023
(138)
- ► Φεβρουαρίου (74)
- ► Ιανουαρίου (64)
-
►
2022
(849)
- ► Δεκεμβρίου (61)
- ► Σεπτεμβρίου (74)
- ► Φεβρουαρίου (65)
-
►
2021
(2936)
- ► Δεκεμβρίου (59)
- ► Σεπτεμβρίου (180)
- ► Φεβρουαρίου (325)
-
►
2020
(1624)
- ► Δεκεμβρίου (293)
- ► Σεπτεμβρίου (234)
- ► Φεβρουαρίου (28)
-
►
2019
(13362)
- ► Δεκεμβρίου (19)
- ► Σεπτεμβρίου (54)
- ► Φεβρουαρίου (5586)
- ► Ιανουαρίου (5696)
-
►
2018
(66471)
- ► Δεκεμβρίου (5242)
- ► Σεπτεμβρίου (5478)
- ► Φεβρουαρίου (4835)
- ► Ιανουαρίου (5592)
-
►
2017
(44259)
- ► Δεκεμβρίου (5110)
- ► Σεπτεμβρίου (5105)
-
►
2016
(7467)
- ► Δεκεμβρίου (514)
- ► Σεπτεμβρίου (1038)
- ► Φεβρουαρίου (793)
-
▼
2015
(2119)
-
▼
Δεκεμβρίου
(940)
-
▼
Δεκ 22
(50)
- IJERPH, Vol. 13, Pages 30: Characterizing the HIV/...
- IJERPH, Vol. 13, Pages 15: When Free Is Not for Me...
- IJERPH, Vol. 13, Pages 26: Implementing a Graduate...
- IJERPH, Vol. 13, Pages 61: Rapid Assessment of Env...
- IJERPH, Vol. 13, Pages 16: Dietary Acculturation a...
- Pharmacy, Vol. 4, Pages 1: Social Pharmacy and Cli...
- IJERPH, Vol. 13, Pages 68: Factors Affecting the Q...
- Energies, Vol. 9, Pages 1: A New Fast Peak Current...
- IJERPH, Vol. 13, Pages 25: Building Collaborative ...
- Toxins, Vol. 8, Pages 1: Anthrax Susceptibility: H...
- IJMS, Vol. 17, Pages 0003: The Role of Alternative...
- IJMS, Vol. 17, Pages 0002: The Development of Neur...
- IJMS, Vol. 17, Pages 0007: The Flaxseed-Derived Li...
- IJMS, Vol. 17, Pages 0001: Poly-ε-caprolactone Coa...
- IJMS, Vol. 17, Pages 0005: Verification of SNPs As...
- IJMS, Vol. 17, Pages 0004: Cloning, Characterizati...
- IJMS, Vol. 17, Pages 0006: Does Variation of the I...
- IJMS, Vol. 17, Pages 0006: Does Variation of the I...
- IJERPH, Vol. 13, Pages 0015: When Free Is Not for ...
- IJMS, Vol. 17, Pages 0007: The Flaxseed-Derived Li...
- IJMS, Vol. 17, Pages 0003: The Role of Alternative...
- IJERPH, Vol. 13, Pages 0017: Genistein and Glyceol...
- IJMS, Vol. 17, Pages 0001: Poly-ε-caprolactone Coa...
- IJERPH, Vol. 13, Pages 0013: Using an External Exp...
- IJERPH, Vol. 13, Pages 0010: Glyceollin I Reverses...
- Remote Sensing, Vol. 8, Pages 0001: Sensor Capabil...
- IJMS, Vol. 17, Pages 0005: Verification of SNPs As...
- Remote Sensing, Vol. 8, Pages 0002: Mapping Submer...
- IJERPH, Vol. 13, Pages 0008: Ethnic Differences in...
- IJERPH, Vol. 13, Pages 0014: Cultural Competence i...
- Pharmacology: The Pharmacodynamics of Nutrients an...
- Remote Sensing, Vol. 8, Pages 0008: Optical Thickn...
- Sensors, Vol. 16, Pages 0003: Fault-Tolerant Algor...
- Remote Sensing, Vol. 8, Pages 0003: Fusion of Airb...
- Remote Sensing, Vol. 8, Pages 0004: Sea-Ice Winter...
- High sensitive and direct fluorescence detection o...
- Development of a novel bacteriophage based biomagn...
- Sustainability, Vol. 8, Pages 0002: The Effects of...
- IJERPH, Vol. 13, Pages 0005: Cellular Mechanisms o...
- Sensors, Vol. 16, Pages 0001: Instantaneous Real-T...
- Sensors, Vol. 16, Pages 0008: Proximal Detection o...
- IJERPH, Vol. 13, Pages 0002: Statistical Validatio...
- IJMS, Vol. 17, Pages 0002: The Development of Neur...
- Sustainability, Vol. 8, Pages 0003: Innovative Car...
- Sustainability, Vol. 8, Pages 0005: Development of...
- Sustainability, Vol. 8, Pages 0001: Comparative In...
- IJERPH, Vol. 13, Pages 0001: The Oglala Sioux Trib...
- Sensors, Vol. 16, Pages 0002: Damage Detection in ...
- IJERPH, Vol. 13, Pages 0003: Improving the Neighbo...
- IJERPH, Vol. 13, Pages 0006: African American Wome...
-
▼
Δεκ 22
(50)
-
▼
Δεκεμβρίου
(940)
Αναζήτηση αυτού του ιστολογίου
Τρίτη 22 Δεκεμβρίου 2015
Remote Sensing, Vol. 8, Pages 0003: Fusion of Airborne Discrete-Return LiDAR and Hyperspectral Data for Land Cover Classification
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
-
Αλέξανδρος Γ. Σφακιανάκης Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,0030693260717...
-
heory of COVID-19 pathogenesis Publication date: November 2020Source: Medical Hypotheses, Volume 144Author(s): Yuichiro J. Suzuki ScienceD...
-
https://ift.tt/2MQ8Ai8
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.